返回首页

如何快速有效的 清洗掉 陶瓷杯 玻璃杯 紫砂壶 上的茶迹

来源:www.nbmjn.com   时间:2023-01-23 08:47   点击:192  编辑:admin   手机版

一、如何快速有效的 清洗掉 陶瓷杯 玻璃杯 紫砂壶 上的茶迹

牙膏,一块百洁布,即可~ 

我天天用,效果不用说,试了就知道。

二、如何去除宜兴茶壶和茶杯上面的水印和茶垢啊,谢谢。

如果是陶瓷杯上的茶垢建议用白牙膏,效果很好。紫砂茶壶里面的茶垢一般都不舍得去除。水印的话可以用水彻底冲洗干净,然后迅速用干毛巾擦干,效果还好。

三、茶几上都是些什么?

都是些杯具

四、求 去 除 茶 杯 上 茶 迹 的 方 法

盐和牙膏 是最经济实惠的 先把杯子用水沾湿 然后撒上一点盐或者牙膏 用抹布擦洗 就可以了

五、生活中的数学.(一道数学应用题)

随着优惠形式的多样化,“可选择性优惠”逐渐被越来越多的经营者采用。一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。

我在纸上写道:

设某顾客买茶杯x只,付款y元,(x>3且x∈N),则

用第一种方法付款y1=4×20+(x-4)×5=5x+60;

用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.

接着比较y1y2的相对大小.

设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.

然后便要进行讨论:

当d>0时,0.5x-12>0,即x>24;

当d=0时,x=24;

当d<0时,x<24.

综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.

可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜绝了浪费,真是一举两得啊!

在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时,

其利润随投资的变化关系一般可用二次函数表示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值

在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地树木间距保持一致。(如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。这便要用到锐角三角函数的知识。

如右图,令C=90 ,B=α ,平地距为d,山坡距为r,则secα=secB =AB/CB=r/d. ∴r=secα×d这个问题至此便迎刃而解了。

1、“白猫”洗衣粉桶

“白猫”洗衣粉桶的形状是等边圆柱(如右图所示),

若容积一定且底面与侧面厚度一样,问高与底面半径是

什么关系时用料最省(即表面积最小)?

分析:容积一定=>лr h=V(定值)

=>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2)

≥2л3 (r h) /4 =3 2лV (当且仅当r =rh/2=>h=2r时取等号),

∴应设计为h=d的等边圆柱体.

2、“易拉罐”问题

圆柱体上下第半径为R,高为h,若体积为定值V,且上下底

厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最

省(即表面积最小)?

分析:应用均值定理,同理可得h=2d(计算过程请读者自己

写出,本文从略)∴应设计为h=2d的圆柱体.

顶一下
(0)
0%
踩一下
(0)
0%